Дифракция Фраунгофера на прямоугольной щели.


При самостоятельном желании понять тему " Дифракция Фраунгофера на прямоугольной щели. " вам поможет наш ресурс. Для вас наши специалисты подготовили материал, изучив который вы будете разбираться в ней уровне профессионала. А если у вас останутся вопросы, то задать их вы сможете прямо на сайте написав в чат онлайн-консультанта.

оформить заявку

Слишком сложно? Тогда запросите консультацию специалиста!

Наша компания занимается тем, что помогает студентам выполнять различные учебные работы на заказ. Вы можете ознакомиться с перечнем выполняемых работ, а так же с их стоимостью на странице с ценами.

ознакомиться с условиями

Краткое пояснение: Дифракция Фраунгофера на прямоугольной щели.

 

O
P
N
M
C
B
j
Э1
Э2
Л
Рис. 3.6 Дифракция плоской волны от щели
a
Дифракцию в парал­лельных лучах или дифракцию плоских волн впервые иссле­довал немецкий физик И. Фра­унгофер в 1821-1822гг. Пусть плоская монохроматическая волна падает нормально на не­прозрачный экран Э1 с длинной узкой щелью АВ шириной а (рис. 3.6). Согласно принципу Гюйгенса – Френеля все точки щели можно рассматривать как вторичные источники световых волн, колеблющихся в одной фазе (так как плоскость щели есть часть волновой поверхности падающей плоской волны), и распространяющихся во всех направлениях. Из всего многооб­разия направлений выберем одно произвольное и будем рас­сматривать лучи, идущие под углом φ к падающим лучам. Па­раллельно экрану Э1 поместим линзу Л, а в ее фокальной плос­кости – экран Э2, на котором лучи соберутся в некоторой точке Р. Опустим перпендикуляр АС из точки А на крайний луч. АС представляет собой волновую поверхность для лучей, идущих под углом φ и, согласно определению, все точки данной поверх­ности колеблются в одной фазе. Поэтому отрезок ВС является оптической разностью хода между крайними лучами пучка, ВС = Δ = аsinφ. Поделим участок ВС на отрезки, равные λ/2 и из то­чек деления проведем плоскости, параллельные АС до пересе­чения с АВ (эти плоскости перпендикулярны рисунку и поэтому на нем изображены как прямые линии). Эти плоскости поделят щель АВ на равные полоски, которые являются зонами Френеля, т.к. световые волны, идущие от соседних полосок, имеют раз­ность хода λ/2 (см. рис. 3.6). Если число зон будет четным, они попарно погасят друг друга, и в точке Р будет наблюдаться ми­нимум освещенности. Четное число отрезков на участке ВС со­ответствует условию аsinφ = ±2m λ/2, где m = 1,2,3…Это усло­вие называется условием дифракционного минимума. Из него находятся углы, под которыми наблюдаются дифракционные минимумы на экране. Знак “минус” соответствует лучам, иду­щим от щели под углом –φ.

Если число зон Френеля нечетно, на экране в точке Р по­лучается дифракционный максимум. Условие дифракционного максимума имеет вид

аsinφ = ±(2m + 1)λ/2, где m = 1, 2, 3…

Это условие определяет углы, соответствующие макси­мумам освещенности на экране Э2. Число m называется поряд­ком дифракционного максимума или минимума.

В центральной точке экрана О соберутся лучи, идущие в направлении φ = 0, следовательно, без разности хода. В этом на­правлении щель действует как одна зона Френеля, создавая в точке О самый интенсивный максимум нулевого порядка. Это будет светлая полоса, повторяющая форму щели. Дифракцион­ная картина от щели симметрична относительно точки О и ин­тенсивности максимумов более высоких порядков уменьшаются в пропорции 1 : 0,047 : 0,017 : 0,008…




Дифракционная картина на экране зависит от отношения длины волны падающего монохроматического излучения λ к ширине щели а. Из условия дифракционного минимума , следовательно расстояния от центра картины до мини­мумов возрастают с уменьшением а. Центральная светлая полоса при этом расширяется. При а«λ вся поверхность щели будет небольшой частью лишь одной зоны Френеля. Такую щель можно считать линейным источником света, колебания от которого будут распространяться в одной фазе и дифракцион­ной картины не наблюдается. При а»λ в центре экрана получа­ется широкая равномерно освещенная полоса, обусловленная беспрепятственным прямолинейным распространением света от источника, и на ее краях наблюдаются очень узкие дифракцион­ные полосы.

При освещении щели белым светом дифракционные мак­симумы, соответствующие различным длинам волн пространст­венно разделятся. Чем меньше длина волны, тем ближе к центру экрана будет располагаться ее максимум. Это следует из усло­вия максимума при дифракции от одной щели. В центре экрана объединятся лучи всех длин волн, так как здесь угол φ = 0 и раз­ность хода Δ = 0, поэтому центральный максимум будет белым. Максимумы первого, второго и высших порядков разложатся в спектры, обращенные фиолетовым краем к центру экрана. По­добные спектры расплывчаты, поэтому четкое разделение по длинам волн при дифракции от одной щели получить не уда­ется. Для получения более качественной дифракционной кар­тины свет от источника необходимо пропустить через несколько параллельных щелей.



8. Дисперсия и разрешающая сила спектрального прибора.

P1
P2
dl
l
j
dj
O
Э
L
Рис. 3.9
Основными характеристиками любого спектрального прибора, в том числе и дифракционной решетки, являются его дисперсия и разрешающая сила. От их величин зависит способ­ность прибора пространственно разделить лучи разных длин волн. Линейная дисперсия D определя­ется как отношение , где dl - расстоя­ние между спектральными линиями, а dλ – разность длин волн этих линий. Определение справедливо также для разности частот линий dν. Угловая диспер­сия , где dφ – разность углов между лучами, отличающимися на dλ или dν со­ответственно. На рис. 3.9 показаны два луча, идущие под углами φ и φ + dφ, и имеющие длины волн λ и λ + dλ, соответственно.

Для определения угловой дисперсии дифракционной ре­шетки продифференцируем условие главного максимума dsinφ = = mλ. Мы получим

dcosφ dφ = mdλ,

откуда следует . При малых углах cosφ≈1 и Q ≈ ≈m/d, т.е. чем выше порядок спектра и меньше период решетки, тем больше угловая дисперсия. Она не зависит от числа щелей в решетке и характеризует степень растянутости спектра в об­ласти данной длины волны.

Разрешающая сила спектрального прибора R показывает, какие близкие спектральные линии λ1 и λ2 с разностью длин dλ = λ2 - λ1 можно визуально разделить в спектре. , где λ – средняя длина волны разрещаемых линий λ1 и λ2. На рис. 3.10 пунктиром представлены две близкие спектральные линии, а сплошной кривой показаны наблюдаемые результирующие ин­тенсивности. В случае а) обе линии воспринимаются как одна, в случае б) линии воспринимаются раздельно. Это происходит потому, что возможность визуального разделения линий зависит также от их ширины. Согласно критерию, предложенному анг­лийским физиком Д.Рэлеем, спектральные линии считаются разрешенными, если максимум одной из них совпадает с мини­мумом другой (рис. 3.10 б).

Разрешающая сила дифракционной решетки R пропор­циональна числу щелей N и порядку спектра m, т.е. R = Nm. Приравняв друг другу два выражения для разрешающей силы, мы получим условие разрешимости линий . Если , то спектральные ли­нии разрешаются, если , линии не разрешаются.


Конечно, для полного рассмотрения вопроса 'Дифракция Фраунгофера на прямоугольной щели.', приведенной информации не достаточно, однако чтобы понять основы, её должно хватить. Если вы изучаете эту тему, с целью выполнения задания заданного преподавателем, вы можете обратится за консультацией в нашу компанию. В нашей команде работает большой состав специалистов, которые разбираются в изучаемом вами вопросе на экспертном уровне.

Хм, так же просматривали

Заказ

ФОРМА ЗАКАЗА

Бесплатная консультация

Наша компания занимается написанием студенческих работ. Мы выполняем: дипломные, курсовые, контрольные, задачи, рефераты, диссертации, отчеты по практике, решаем тесты и задачи, и многие другие виды заданий. Чтобы узнать стоимость, а так же условия выполнения работы заполните заявку на этой странице. Как только менеджер увидит ваше сообщение, он сразу же свяжется с вами.

Этапность

СОПРОВОЖДЕНИЕ КЛИЕНТА

Получить работу можно всего за 4 шага

01
Оставляете запрос

Оформляете заказ работы, заполняя форму на сайте.

02
Узнаете стоимость

Менеджер оценивает сложность. Узнаете точную цену.

03
Работа пишется

Оплачиваете и автор приступает к выполнению задания.

04
Забираете заказ

Получаете работу в электронном виде на вашу почту.

Услуги

НАШ СЕРВИС

Что мы еще делаем?

icon
Контрольные работы

от 580 рублей

ПОДРОБНЕЕ
icon
Аттестационные работы

от 1780 рублей

ПОДРОБНЕЕ
icon
Проектные работы

от 3300 рублей

ПОДРОБНЕЕ
icon
НИР (научно-исследовательские работы)

от 3300 рублей

ПОДРОБНЕЕ
icon
Дневник по практике

от 580 рублей

ПОДРОБНЕЕ
icon
Проверка на антиплагиат

от 40 рублей

ПОДРОБНЕЕ